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The relaxation of an internal state distribution in the presence of an excess 
of an inert gas is considered. The explicit time dependence of the non-  
equilibrium contributions to the transition rate coefficients is approximated 
using the Kapra l -Hudson-Ross  method. The resulting solution contains 
cross-correlation terms which do not appear when a single reaction is 
considered. It is shown that  the first term of a perturbat ion expansion of 
an exact formal solution gives the Kapra l -Hudson-Ross  solution for short 
times, and the Chapman-Enskog  solution at long times if there is a wide 
separation in time scales. The Kapra l -Hudson-Ross ,  Chapman-Enskog,  
and exact solutions are compared for a two-state, hard-sphere model 
system. 
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1, I N T R O D U C T I O N  

I n  a d i l u t e  gas,  b i m o l e c u l a r  r e a c t i o n  r a t e s  a re  f o u n d  b y  a v e r a g i n g  r e a c t i v e  

c ross  s ec t i ons  o v e r  t h e  ve loc i ty  a n d  i n t e r n a l  s t a t e  d i s t r i b u t i o n s .  U s u a l l y  i t  
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is assumed that these are Maxwellian distributions, which yields the equilib- 
rium rate coefficients. Away from chemical equilibrium, however, the re- 
action perturbs the Maxwellian distributions. The more reactive parts of the 
distribution are relatively depleted for the reactants and enriched for the 
products when the reaction is going in the forward direction. Nonreactive 
collisions tend to restore the Maxwellian distributions, but the distributions 
will always be somewhat perturbed, and the actual rate will be smaller than 
that calculated using the equilibrium rate coefficients. Much of the work 
treating the nonequilibrium contributions to the rate has been based on a 
modification of the Chapman-Enskog  (CE) perturbation theory. (1-7~ In a 
previous paper (8~,5 it was shown that for isothermal systems the first CE 
nonequilibrium contribution to the reaction rate coefficients can be ex- 
pressed as an autocorrelation function expression. This method, denoted as 
the K H R  method, considers the explicit time dependence of the  perturbed 
distributions, in contrast to the CE theory, which considers only the variation 
on the time scale of the chemical reaction. The K H R  solution asymptotically 
approaches the CE correction on the microscopic time scale characterizing 
momentum relaxation. A crucial assumption made in both treatments is that 
momentum relaxation is much faster than chemical relaxation. 

In this paper  we apply the K H R  method to the relaxation of an internal 
state distribution in the presence of  an excess of  an inert gas. It is assumed 
that a generalized Boltzmann equation (the Wang-Chang-Uhlenbeck equa- 
tion) may be used to describe the time evolution of the system. I f  this is true, 
the transitions between different energy levels can be considered to be a set 
of coupled reactions. The expression derived for the nonequilibrium contri- 
bution to the transition rates contains cross-correlation terms which do not 
appear when only a single reaction is considered. An exact formal solution 
to this problem can be obtained easily because the equations are linear in the 
perturbed distribution functions, unlike the general reaction problem. We 
show that if the exact solution is expanded in a perturbation series, and if the 
assumption that there is a wide separation of ~time scales can be made, then 
the first term of the perturbation series yields the K H R  and CE solutions. 
[n Section 4, the exact, KHR,  and CE solutions are compared for a model 
two-state, hard-sphere system. 

2. T H E  K H R  S O L U T I O N  

The system we consider is a spatially homogeneous gas-phase mixture 
of molecules with internal structure dilutely dispersed in a structureless gas 
X. The presence of an excess of species X simplifies the problem in two ways. 

s Equations (2.31) and (2.32) in Ref. 8 do not, as stated, hold in general, but only when 
the reaction does not affect the temperature of the system. 
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First, it keeps the temperature of the system nearly constant during the 
relaxation of the internal state distribution, and second, since almost all 
collisions suffered by any molecule are with an X molecule, the collision 
operators are linear. The velocity distribution of the X molecules is not 
appreciably perturbed by the internal relaxation, and therefore can be 
assumed to be a Maxwell-Boltzmann distribution 

fg (vx ,  t) = nx(mx/27rkT) 3/2 e x p ( -  m~v~2/2kT) (1) 

The time dependence of the velocity distribution f(v~, t) for molecules in 
internal state i is governed by a Boltzmann equation 

af(v , ,  t) f e ~  - [f(v(,  t)f~~ ') - f ( v / ,  t)fx~ - vx[, f2) 

x [v~ - v~] aft  dvx + y ~ f [f~.(v/, t)f~~ - f(vi ,  t)fx~ 

x ~*(lv, - vxl, ~) lv ,  - v~] d ~  dv~ (2) 

Here a~ is the elastic scattering cross section for molecules in internal state i, 
~* is the inelastic scattering cross section for the transition of molecules 
from the ith to the j th  internal state, and 7' is a formal ordering parameter, 
which is used to indicate that the inelastic collision operator is being treated 
as a perturbation to the elastic collision operator. The distribution functions 
are normalized to the number densities for the various internal states at 
time t 

f A ( v , ,  t) dv, = ndt) (3) 

and can be written in the form 

where 

f = fo(1 + y ~ )  + y2~2) + ...) (4) 

R ,  - j fxo(vx)~lv,  - vxl d a  av~ (7) 

f~ t) = n~(t)(m/2~rkT) 3/2 e x p ( -  mv~2/2kT) (5) 

and m is the mass of the molecules with internal structure. The rate at which 
transitions from the ith to the j th  internal state occur is given by 

ndt)kij(t) = y f f (v , ,  t)Rij(vi) dvi (6) 

with R~i defined by 
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The rate coefficients can be expanded in powers of y, 

k i  j ~,/r(o) .21 . (1 )  . a l . (2)  ,~,~j + + + ... ( 8 )  

The first term is the equilibrium transition rate coefficient, 

k(O.) = (1/n~) f f~  dr, (9) 

and the remaining terms are nonequilibrium corrections, which are given by 

k{~)= <Vi")R~j>~ (10) 

where < >~ represents the equilibrium average of a function of v~, 

<g>,  = (I/n,) fAo(v,)g(v,) dvi (1 1) 

Keeping only terms linear in y in Eq. (2), we obtain the following 
equation for the time dependence of 9p), <a> 

~q~l)/~t = - ~ p )  + ~ 3Riy(v,)[exp(-fl,.~.) - 1] (12) 

where 

and 

~gp ) = f f~~ p) - cpp")a,[v~ - v~] dD, dv~ (13) 

$R,j(v~) = Rij(v,) - <R~.), = R,j(v~) - .qJ/d~ (14) 

~ j  is the affinity for the transition of molecules from the ith to thej th internal 
state. In terms of the internal energies E, and Ej and the number densities of 
these two states, ~ j  is defined by 

exp( -  fla~j) = (n/nO exp [ - fl(q - ,j)] (15) 

If  we assume that initially the system is in a state of local equilibrium so 
that ~p)(v~, t = 0) vanishes, then the solution to Eq. (12) is 

f2 ~op)(v~, t) = ~ [exp(-f i~j )  - 1] e x p ( - ~ V )  8R~j(v0 dt' (16) 

provided t is small enough that the number densities have not changed 
appreciably in this time. Defining 

8R,j(v~, t) = exp[-  ~ t ]  3R~j(v0 (17) 
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and substituting q~{l~ from Eq. (16) into Eq. (10), we obtain the KHR solution 

for/47, 

f2 k~( t ) - -  ~ [ e x p ( - ~ ) -  1] (~R~j ~ ' R~k(t )}~ dt' (18) 
/c ~ ' i  

This expression contains cross-correlation terms not found in the K H R 
solution for a single reaction. These arise because the i---~ k and k--~ i 
transitions perturb f ,  and therefore affect the rate at which transitions from 
the ith to the j th  level occur. 

If the momentum and internal relaxation times are well separated, 
(SR~j 8R~(t')5 will decay to zero before there is any appreciable change in 
the number densities, and the upper limit t in Eq. (18) can be extended to 
infinity to give the CE solution. (8~ 

3. THE EXACT S O L U T I O N  

In this section an exact solution for k~j(t) will be found using a pro- 
jection operator method. (9-11~ The projection operator P ,  is defined by 

= [f~ f x(v3 dv~ P~X(v~) (19) 

The P** are the elements of a diagonal matrix of operators P. Letting f be a 
vector whose components are the distribution functions f for the various 
internal states, we obtain 

(Pf) ,  = f~  (20) 

and 

[(1 - P)f]~ = h,(v~) --f~ + 72~o~ 2> + ...] (21) 

It is convenient to rewrite Eq. (2) as 

8f/Ot = - ( L E  + yL~)f (22) 

L~ and L~ are matrices of elastic and inelastic collision operators, respectively. 
LE is a diagonal matrix whose elements are related to the previously defined 
collision operator s by 

L~,dfor  = fo~r  (23) 

Equations for the time dependence of fo(/) and h(t) can be found using Eqs. 
(20)-(22). Solving for h(t), we obtain 

h(t) = - dt' G(t')(1 - P)(LE + yL~)f~ - t ') + G(t)h(0) (24) 
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where 

G(t) = exp[ - (1  - P)(LE + ~,L1)t] (25) 

We will assume, as in the previous section, that h(t = 0) = 0, and comment 
on this assumption later. Since elastic collisions conserve the number density 
in any internal state, and do not alter Maxwell-Boltzmann velocity distri- 
butions, 

PLE = L~P = 0 (26) 

Therefore, Eq. (24) can be simplified to 

P t 

h(t) = - T j  ~ dt '  G(t')(1 - P)Lxf~ - t ') (27) 

The nonequilibrium contribution to the rate coefficient is given by 

k, j( t )  _ r'~,J" ,.,o) = [y/n,(t)] f R,j(v~)h~(v,, t) dv~ (28) 

Using Eqs. (2), (7), (14), and (19), it can be shown that 

-[(1 - P)L,f~ - t')]~ = f~~ - t ~) ~ ~R~z(Vk) (exp[- - f ldk l ( t -  t')] -- 1) 
l C k  

(29) 

When this expression is used in Eq. (27) and the resulting expression for hi 
is substituted into Eq. (28), we have 

k~j(t) . z.(o) , o - = R,jG,~(t )f~ (t - t ' )  ~R~, r,~,J n - ~  dvi dt '  

• {exp[ - f l~c~( t -  t')] - l} (30) 

This equation provides us with a formal solution for k~j(t) - r.~J~'t'~~ in terms 
of the elastic and inelastic collision operators, and the number densities in 
the time interval (0, t). 

Comparing Eqs. 08 )  and (30), we see that both the exact and the K H R 
solutions for the nonequilibrium contributions to the rate coefficients contain 
similar factors [exp(--fidkl) -- 1]. These are a measure of how far removed 
the internal state distribution is from complete equilibrium. Their presence 
ensures that the nonequilibrium contributions to the transition rates are 
small when the system is close to equilibrium, and vanish at complete 
equilibrium. Each term on the right-hand side of Eq. (30) also contains a 
factor 3Rk~ [see Eqs. (7), (9), and (14)]. This is the difference between the 
velocity-dependent k - +  l inelastic collision frequency and its equilibrium 
average. These factors are a measure of how much the inelastic relaxation 
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perturbs the Maxwell-Boltzmann velocity distributions. The ~Rk~ will be 
small if the inelastic collision frequencies are either small or do not depend 
strongly on velocity. The presence of a comparable factor in the CE solution 
has been noted and discussed by Shizgal and Karplus. C7) 

The propagator G [Eq. (25)] can be expanded in powers of ~, by re- 
peatedly applying the operator identity 

e x p [ -  (A + B)t] = e x p ( -  At)  - e x p [ -  A(t - t')]B e x p [ -  (A + B)t'] dt'  

(31) 

with A = (1 - P)LE = LE and B = y(1 - P)Lz. Substituting the expanded 
form of G in Eq. (30) and keeping only the lowest order term in 7, we obtain 

" ffl k i j ( t ) -  )'~ij- ~.(o) = ni(t) ~ i  dv~ dt' R~j exp[--LE,~d'] 

X f ~  -- t ' )3R,k{exp[-- f l~k( t  -- t')] -- 1} + O(~, 3) 

-v ff o,,(,) k ~  dv~ dt' Rt j f~  - t') exp[-Z~t ' ]  

x 3 R , k { e x p [ - f i ~ ( t  - t')] - 1} + O(~, 3) 

n~(t) . dt'  n~(t - t )(3R~j 3R~k(t'))t 

x {exp[--fl~k(t -- t ')] -- 1} + O(~, a) (32) 

If  1' is small enough that the number densities are still very close to their 
initial values, then this first term reduces to the K H R solution, Eq. (18). 
This first term also will asymptotically yield the CE Solution at any time after 
the initial transient behavior provided that the correlation functions 
(~R~j 3R~(t'))~ decay to zero before there is any appreciable change in the 
number densities [i.e., n j ( t -  t ' ) ~  nj(t) for any t '  small enough that 
(3Rij 3R~k(t'))~ contributes significantly to the integral in the final expression 
of Eq. (32)]. This analysis indicates that the CE correction to the rate will 
be accurate only if ~,(1 - P)LI(1 - P) is a small perturbation to the elastic 
collision operator LE and if the momentum relaxation time is much smaller 
than the internal relaxation time. These conditions may not be met simul- 
taneously. For example, even when there is a fairly wide separation in the 
time scales, the internal relaxation might substantially perturb L~ if the 
inelastic collision frequencies R~j(v~) depend very strongly on velocity. An 
effect of this type seems to occur in Widom's step-ladder model, (a2) which was 
devised to study the effect that the disturbance to an internal state distri- 
bution caused by a reaction has on the rate of reaction. Even though the 
nonequilibrium correction is large, it is believed that there is a wide separation 



476 Suzanne Hudson and John Ross 

in time scales for this model. (The rate was not expanded in a perturbation 
series, but the nonequilibrium contribution can be so large that good con- 
vergence of such a series would not be expected.) 

In obtaining solutions for k~j(t) - 7k~ we have assumed that the velocity 
distributions are initially unperturbed so that h(t = 0) = 0. In general, of 
course, this will not be true and we should include the G(t)h(0) term in Eq. 
(24). G(t) can be expanded as before in powers of 7, using Eq. (31). For 
reasonable initial distributions, h(0) would be expected to be of the order of 
7 or smaller. I f  this is the case, then we need to keep only the first term in the 
expansion of G(t), namely exp[--LEt], in order to evaluate the rate coeffi- 
cients through order 72. Since f~ is characterized by the actual number 
densities and temperature at time t, h must be orthogonal to the eigenfunc- 
tions of LE with zero eigenvalue. Therefore, to lowest order in 7, the decay of 
G(t)h(0) is governed by the smallest nonzero eigenvalue of LE, Zl ~ which 
characterizes the momentum relaxation rate. Provided 7(1 - P)LI(1 - P) is 
a small perturbation to L~, G(t)h(0) will affect only the initial transient 
behavior of k~j(t), and can be neglected for t >> 1/tl ~ Therefore the CE 
solution will still be valid if the perturbation is small and if there is a wide 
separation in time scales. 

4. M O D E L  T W O - S T A T E  H A R D - S P H E R E  C A L C U L A T I O N  

In this section the K H R ,  CE, and exact solutions are compared for the 
internal relaxation of a two-state system (or, equivalently, for an isomeriza- 
tion reaction) in the presence of an excess of inert gas. This supplements 
similar comparisons published by Shizgal (13'14~ and Simons. ~15~ The present 
model includes the effects of the reverse reaction, which were neglected in 
these previous treatments. 

The elastic cross sections for this model system were chosen to be hard- 
sphere cross sections 

el = ~r2 = -}d~ 2 (33) 

The inelastic cross section for the conversion of molecules from state 1 to 
state 2 was taken to be a modified hard-sphere cross section, 

or* 2 = �88 - E * / E ) ,  E > E *  (34) 
= 0 ,  E <  E* 

Here the reduced relative kinetic energy E is given by 

E = ~ l v l  - v x l 2 / ( 2 k r )  (35) 

where p~ is the reduced mass. E* is a reduced activation energy below which 
the reaction does not occur. As a consequence of detailed balance (16~ the 
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inelastic collision cross section for the conversion of molecules from state 
2 to state 1 must have the same form as a*2 given in Eq. (34) with E* replaced 
by E*" = E *  - (E2 - E1)/kT. In all of the calculations the mass of  the 
molecules with internal structure was restricted to be the same as the mass of  
an X molecule, and the initial number densities were related to their equilib- 
rium values by n~(t = 0) = 0.9n] q and n2(t = 0 ) =  n~ q + 0.1n~ q. The acti- 
vation energies E* and E*" were varied, as was the ratio of the inelastic and 
elastic hard-sphere diameters. 

The rate coeff• will be written 

ki j ( t )  = k~0)rl _ -~j L- -q~j(t)] (36) 

where k~j(t) is defined by Eq. (6). From Eqs. (15) and (18) it can be seen 
that the only dependence that the K H R  and CE approximations for V~j 
have on the number densities is through the factor [1 - exp(-/3s~j)]. The 
K H R  solution is valid only for very short times, so that the initial number 
densities were used to calculate this factor for V~.a~. The CE solution, how- 
ever, is valid on the slow time scale of the internal state relaxation (or 
chemical reaction), and depends on time only implicitly through its de- 
pendence on the hydrodynamic variables, which for this problem are the 
number densities and the temperature/a7> It  seemed most consistent with this 
interpretation of the CE solution to use the exact number densities at time 
t in calculating the factor [1 - exp( - /3~ j ) ]  for ~ s ( t ) ,  and this is the con- 
vention used in this paper. Although the theoretical rate coefficients k12 and 
k ~  are conceptually convenient quantities, the net rate of the appearance or 
disappearance of molecules in one of the internal states is more accessible 
experimentally. I f  we write 

-q~j(t) = ~'~j(t){1 - exp[- /3~j( t ) ]}  (37) 

then the net rate can be written as 

/ j 

dn~/dt = - n a k ~ 2  + n~k2a = (k]~ + ,,2~t,,~'~~162 _ n0( l  - ~7~2 - ~21) (38) 

Since (t.(o) + b-(0)'l/r, eq ~"x2 '~2aJv'~ - nl) is the net rate predicted using the equilibrium 
rate coefficients, -('q'~2 + r/,~) is the fractional nonequilibrium contribution 
to the net rate. In the CE approximation V~2 + V~ is constant, while for the 
exact solution ~7'~2 + '7~ asymptotically approaches a quantity "qa' which is 
related to the smallest nonzero eigenvalue of L~ + Lz, ~h, by 

= t,,ts + k~)(1 r/~') (39) 

The approximate and exact solutions were calculated by expanding the 
distribution functions in Sonine polynomials S~m and truncating the ex- 
pansion at N = 3. With one exception, which is noted, the uncertainty in 
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i 

10 t 

5 I0 15 20  
t' 

Fig. 1. The time dependence of rh2 with E* -- 5, E*' = 4.5, d12 /d~  2 = 1. 

the results is no more than two units in the third significant figure. The 
details of the calculations are similar to those in previous treatments. (8'15) 

In Table I, ~A' is compared to the CE value for ~1~2 + @~1 for several 
values of E*, E*', and dl2/d~ 2. Included in this table are the ratio of the 
2 ~ 1 inelastic collision frequency to the elastic collision frequency (v21/v~) 
and the ratio of the two smallest nonzero eigenvalues of L~ + LI, (11/12). 
The eigenvalues 11 and 12 approximately characterize the inelastic and elastic 
relaxation rates, respectively,, so that the ratio 11/12 will be much less than 
one when there is a wide separation in time scales. The results in this table 
bear out Shizgal's aa,14) conclusion that the ratio of the reactive and elastic 
collision frequencies must be very small in order for the CE method to be 
valid, although how small may well depend considerably on the nature of 
both the reactive and elastic cross sections. In Fig. 1 the KHR,  CE, and exact 
values for ~12 are shown as a function of time for the case E* = 5, E*' = 4.5, 
and d12/dF 2 = 1. In Fig. 2 the exact and K H R  values of (~'~2 + "q;1)/('q~ + ~l)e~. 
are plotted against time for the same set of parameters. In these two figures the 
time scale has been chosen so that one elastic collision occurs per unit t'. It 
can be seen from these figures that the KHR solution approximates the 
initial transient behavior, while the CE solution approximates the tong-time 
hydrodynamic behaviorP Both of these approximations improve as the time 

6 The fact that the KHR and CE values for "q~2 + ~ coincide at long times is due to 
the linear nature of this problem. In general the KHR solution approximates only the 
initial transient behavior and is not valid at long times. 
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1.00 

0.75 

+ 

i-'~ 0.5 
+ 

0.25 

I 

/ 
J I 

KHR 

EXACT 

I I I 
5 LO 15 

Fig. 2. The time dependence of (~7~.2 + ~7~1)/('q[2 + ~7~1)cE with E* = 5, E*'  = 4.5, 
d~2/dE 2 = 1. 

scales b e c o m e  m o r e  wide ly  separa ted ,  and  as the  n o n e q u i l i b r i u m  co r r ec t i on  

b e c o m e s  smal ler ,  as can  be  seen f r o m  T a b l e  I I ,  where  the  exac t  and  app rox i -  

m a t e  va lues  o f  ~712/~c~(t  = 0) are  c o m p a r e d  fo r  two  cases b o t h  wi th  E *  = 5 

a n d  E*" = 4 bu t  w i th  dz2 /d~  2 = 1 in one  ins tance  and  d~2/dE 2 = 0.04 in the  

o ther .  T h e  s epa ra t i on  in the  t ime  scales is wider ,  and  the  n o n e q u i l i b r i u m  

Table II. Time Dependence of the Approximate and Exact 

c z  t "q12/~z2(=0) fo r  E * = 5 ,  E * ' = 4  
i 

dx2/dE 2 = 1 d~2/d~ 2 = 0.04 

t '  K H R  CE Exact K H R  CE Exact 

1 
2 
3 
4 
5 
6 
8 

10 
15 
20 
30 

0.582 0.974 0.507 0.582 0.999 0.578 
0.814 0.950 0.658 0.814 0.998 0.806 
0.913 0.927 0.703 0.913 0.997 0.902 
0.957 0.905 0.711 0.957 0.996 0.944 
0.979 0.883 0.705 0.979 0.994 0.9(54 
0.989 0.862 0.693 0.989 0.993 0.973 
0.997 0.822 0.664 0.997 0.991 0.978 
0.999 0.784 0.635 0.999 0.989 0.978 
1.000 0.697 0.564 1.000 0.984 0.974 
1.000 0.620 0.502 1.000 0.978 0.968 
1.000 0.492 0.398 1.000 0.967 0.958 
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cor rec t ion  smaller ,  for the  smal ler  value o f  d12/dE 2, and the a p p r o x i m a t e  

solut ions  are cor responding ly  better.  

The previous  compar i sons  of  the CE, K H R ,  and exact  solut ions con- 
sidered only irreversible react ions,  (13-15~ while in this model  p rob lem both  
1 --> 2 and 2--+ 1 t ransi t ions  occur.  Reta in ing  the reverse reac t ion  has two 
effects for this type  of  l inear  p roblem.  First ,  at  long t imes the exact  ~hj drif t  
d o w n w a r d  ra ther  than  leveling off to a cons tan t  value. Second,  the non-  
equi l ibr ium cont r ibu t ions  to the fo rward  and reverse rates bo th  decrease the 
net rate,  so that  the to ta l  nonequi l ib r ium effect is larger  than  when the 
reverse react ion is neglected. 

A n o t h e r  reason why the long- t ime behavior  of  our  results differ from 

those Shizgal ob ta ined  (la,14~ is because we chose to define the -q~j differently 
than he did. F o r  the present  p rob lem Shizgal ' s  nonequi l ib r ium con t r ibu t ion  
to k12, vs2, would  be given by 

nl(t)k12(t)  = n ~~176 t y 12, - ~Ts2(t)] (40) 

where n]~ is the value for  n~ at  t ime t predic ted  using the equi l ibr ium 
rate constants  and  n~~ = hi(0). We  use nl( t )  ins tead of  n~~ in Eq. (40). 
Therefore ,  Shizgal 's  values for  the n o n e q u i l i b r i u m  con t r ibu t ion  to the rate  
coefficients conta in  a cumulat ive  effect no t  present  in our  results. 
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